about summary refs log tree commit diff
path: root/main.py
blob: e5ad3c8d3e67e5704bdc496c3e77e48ffed52184 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import sys
import math
from random import randint

from engine import Engine
from fuel import Fuel
from stage import Stage
from rocket import Rocket
from atmosphere import Atmosphere
from body import Body
from universe import Universe
from simulation import Simulation

import pygame
from pygame.locals import *

def main(argv):
    raptor_engine = Engine(name="raptor", isp=360, max_flow_rate=931) #https://en.wikipedia.org/wiki/SpaceX_Raptor
    methane_fuel = Fuel(name="methane") #TODO: more

    #https://en.wikipedia.org/wiki/SpaceX_Starship
    first_stage = Stage(name="superheavy booster",
                        stage_mass=180000,
                        engine=raptor_engine,
                        engine_number=33,
                        fuel_type=methane_fuel,
                        fuel_mass=3600000,
                        drag_coefficient=1.18,
                        cross_sectional_area=(math.pi * (9**2))
                        )

    second_stage = Stage(name="starship",
                        stage_mass=80000,
                        engine=raptor_engine,
                        engine_number=6,
                        fuel_type=methane_fuel,
                        fuel_mass=1200000,
                        drag_coefficient=1.18,
                        cross_sectional_area=(math.pi * (9**2))
                        )

    rocket = Rocket(name="starship launch system", 
                    stages=[first_stage, second_stage],
                    payload_mass=100
                    )
    
    body = Body(name="earth",
                density=5.51,
                radius=6371000,
                atmosphere=Atmosphere(
                                      avg_sea_level_pressure=101325,
                                      molar_mass_air=0.02896,
                                      standard_temp=288.15
                                     )
                )
    
    universe = Universe(name="conventional",
                        G=6.67E-11
                        )
    
    simulation = Simulation(universe, body, rocket)
    simulation.rocket.current_stage().engines_on = True

    pygame.init()
    pygame.display.set_caption("OSLS - Overly Simple Launch Simulator")
    clock = pygame.time.Clock()

    SCREEN_WIDTH = 1024
    SCREEN_HEIGHT = 720

    simulation_display = pygame.display.set_mode((SCREEN_WIDTH,SCREEN_HEIGHT))
    paused = False
    while True:
        if not paused:
            draw_simulation(simulation_display, simulation)
            pygame.display.update()

        for event in pygame.event.get(): 
            if event.type == pygame.QUIT:  
                pygame.quit()  
                quit()
            elif event.type == pygame.KEYDOWN:
                if event.key == pygame.K_q:
                    quit()
                elif event.key == pygame.K_SPACE:
                    paused = not paused
                else:
                    handle_key_press(simulation, event.key)

        delta = clock.tick(60) / 1000 #60fps #are we using delta in the simulation tick everywhere needed?
        if not paused: #tick with pause messes up delta TODO: TODOODODODODODOOD TODO
            print("delta: " + str(delta))
            simulation.tick(delta=delta)

        #TODO: draw floor, flame (continuity)
        #TODO: do max load on rocket so it blows up
        #TODO: allow for x movement, speed, accel etc
        #TODO: allow multilanguage api for landing algorithms etc
        #TODO: probs need cloud sprite that spawns and despawns as well as floor sprite

def linear_gradient(start_color, end_color, length, value_at):
    return [
        int(start_color[j] + (float(value_at)/(length-1))*(end_color[j]-start_color[j]))
        for j in range(3)
    ]

def draw_simulation(simulation_display: type[pygame.Surface], simulation: type[Simulation]) -> None:        
        #draw background
        def get_color_for_height(height: float) -> (int, int, int):
            if height < 70000:
                return linear_gradient((31,118,194), (0, 0, 0), 70000, int(height))
            else:
                return (0, 0, 0)

        #gradient for atmosphere
        simulation_display.fill(get_color_for_height(simulation.y))

        #draw clouds and stars
        #draw clouds (we need continuity TODO)
        #if simulation.y < 20000 and randint(0, 100) < 5:
        #     pygame.draw.circle(simulation_display, (255, 255, 255), (randint(0, simulation_display.get_width()), randint(0, simulation_display.get_height())), 30)
        #draw stars
        if simulation.y > 30000:
            for _ in range(100):
                simulation_display.set_at((randint(0, simulation_display.get_width()), randint(0, simulation_display.get_height())), (255, 255, 255))
        #draw stats text
        font = pygame.font.SysFont("Comic Sans MS", 30)

        simulation_display.blit(font.render("Simulation time: {:.0f}s".format(simulation.time), False, (255, 255, 255)),(0,0))
        simulation_display.blit(font.render("Altitude: {:.0f}m".format(simulation.y), False, (255, 255, 255)),(0,40))
        simulation_display.blit(font.render("Speed: {:.0f}m/s".format(simulation.speed_y), False, (255, 255, 255)),(0,80))
        simulation_display.blit(font.render("Acceleration: {:.2f}m/s2".format(simulation.acceleration_y), False, (255, 255, 255)),(0,120))
        simulation_display.blit(font.render("Thrust: {:.0f}N".format(simulation.rocket.current_stage().current_thrust(simulation.body.g(simulation.universe.G, simulation.y))), False, (255, 255, 255)),(0,160))
        simulation_display.blit(font.render("Fuel in stage: {:.0f}kg".format(simulation.rocket.current_stage().fuel_mass), False, (255, 255, 255)),(0,200))
        simulation_display.blit(font.render("Stage mass: {:.0f}kg".format(simulation.rocket.current_stage().total_mass()), False, (255, 255, 255)),(0,240))
        simulation_display.blit(font.render("Rocket mass: {:.0f}kg".format(simulation.rocket.total_mass()), False, (255, 255, 255)),(0,280))
        simulation_display.blit(font.render("Stage number: {:.0f}".format(simulation.rocket.stages_spent), False, (255, 255, 255)),(0,320))
        simulation_display.blit(font.render("Throttle: {:.0f}%".format(simulation.rocket.current_stage().throttle), False, (255, 255, 255)),(0,360))

        #draw rocket
        first_stage_height = 90 #TODO
        first_stage_width = 60

        def calculate_rocket_y_based_on_y_speed_accel(display_height: int, rocket_height: int, speed_y: float, accel_y: float) -> int:
            top = display_height / 5 - (rocket_height / 2) #in the case we are accelerating positively
            bottom = display_height - (top * 2)

            return bottom
            
        def calculate_rocket_x_based_on_x_speed_accel(display_width: int, rocket_width: int, speed_x: float, accel_x: float) -> int:
            return display_width / 2 - (rocket_width / 2)

        rocket_x = calculate_rocket_x_based_on_x_speed_accel(simulation_display.get_width(), first_stage_width, None, None)
        rocket_y = calculate_rocket_y_based_on_y_speed_accel(simulation_display.get_height(), first_stage_height, simulation.speed_y, simulation.acceleration_y)

        rocket_color = (244, 67, 54)

        flame_radius = 10
        flame_color = (255, 125, 100)

        i = simulation.rocket.stages_spent
        stage_height = first_stage_height / (i + 1)
        stage_y = rocket_y + first_stage_height - stage_height
        for _ in simulation.rocket.stages:
            stage_width = first_stage_width / (i + 1)
            stage_x = rocket_x + i * (stage_width / 2)
            pygame.draw.rect(simulation_display, rocket_color, pygame.Rect(stage_x, stage_y, stage_width, stage_height))
            stage_y -= stage_height / 2
            stage_height /= 2
            i += 1
         
        #draw flame
        if simulation.rocket.current_stage().engines_on and simulation.rocket.current_stage().fuel_mass > 0:
            pygame.draw.circle(simulation_display, flame_color, (rocket_x + (first_stage_width / 2), rocket_y + first_stage_height + flame_radius), flame_radius)

def handle_key_press(simulation, key):
    if key == pygame.K_x:
        simulation.rocket.current_stage().engines_on = not simulation.rocket.current_stage().engines_on
    elif key == pygame.K_z:
        simulation.rocket.perform_stage_separation(True)
    elif key == pygame.K_DOWN:
        current_stage = simulation.rocket.current_stage()
        if current_stage.throttle > 0:
            current_stage.throttle -= 1
    elif key == pygame.K_UP:
        current_stage = simulation.rocket.current_stage()
        if current_stage.throttle < 100:
            current_stage.throttle += 1
    elif key == pygame.K_LEFT:
        return None
        #sys.exit(0)
    elif key == pygame.K_RIGHT:
        return None
        #sys.exit(0)

if __name__ == "__main__":
    main(sys.argv)