1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
import sys
import math
from random import randint
from engine import Engine
from fuel import Fuel
from stage import Stage
from rocket import Rocket
from atmosphere import Atmosphere
from body import Body
from universe import Universe
from simulation import Simulation
import pygame
from pygame.locals import *
def main(argv):
raptor_engine = Engine(name="raptor", isp=360, max_flow_rate=931) #https://en.wikipedia.org/wiki/SpaceX_Raptor
methane_fuel = Fuel(name="methane") #TODO: more
#https://en.wikipedia.org/wiki/SpaceX_Starship
first_stage = Stage(name="superheavy booster",
stage_mass=180000,
engine=raptor_engine,
engine_number=33,
max_engine_gimbaling_angle=30,
fuel_type=methane_fuel,
fuel_mass=3600000,
x_drag_coefficient=1.16,#https://www.sciencedirect.com/science/article/abs/pii/S002980181400167X
x_cross_sectional_area=(69 * 9), #booster height: 69m, diameter:9m
y_drag_coefficient=1.28,#https://www.grc.nasa.gov/www/k-12/rocket/shaped.html
y_cross_sectional_area=(math.pi * (4.5**2)) #booster radius: 4.5m
)
second_stage = Stage(name="starship",
stage_mass=80000,
engine=raptor_engine,
engine_number=6,
max_engine_gimbaling_angle=30,
fuel_type=methane_fuel,
fuel_mass=1200000,
x_drag_coefficient=1.16,#https://www.sciencedirect.com/science/article/abs/pii/S002980181400167X
x_cross_sectional_area=(49 * 9), #rocket height: 49m, diameter:9m
y_drag_coefficient=0.8,#https://www.grc.nasa.gov/www/k-12/rocket/shaped.html
y_cross_sectional_area=(math.pi * (4.5**2))#rocket radius: 4.5m
)
rocket = Rocket(name="starship launch system",
stages=[first_stage, second_stage],
payload_mass=100
)
body = Body(name="earth",
density=5.51,
radius=6371000,
atmosphere=Atmosphere(
avg_sea_level_pressure=101325,
molar_mass_air=0.02896,
standard_temp=288.15
)
)
universe = Universe(name="conventional",
G=6.67E-11
)
simulation = Simulation(universe, body, rocket)
simulation.rocket.current_stage().engines_on = True
pygame.init()
pygame.display.set_caption("OSLS - Overly Simple Launch Simulator")
clock = pygame.time.Clock()
SCREEN_WIDTH = 1024
SCREEN_HEIGHT = 720
simulation_display = pygame.display.set_mode((SCREEN_WIDTH,SCREEN_HEIGHT))
paused = False
while True:
if not paused:
draw_simulation(simulation_display, simulation)
pygame.display.update()
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_q:
quit()
elif event.key == pygame.K_SPACE:
paused = not paused
else:
handle_key_press(simulation, event.key)
delta = clock.tick(60) / 1000 #60fps #are we using delta in the simulation tick everywhere needed?
if not paused: #tick with pause messes up delta TODO: TODOODODODODODOOD TODO
print("delta: " + str(delta))
simulation.tick(delta=delta)
#TODO: draw body sprite, rocket sprite, clouds sprites, etc.
#TODO: implement height properly (body radius) + actually implement body
#TODO: do max load on rocket so it blows up
#TODO: allow multilanguage api for landing algorithms etc
def draw_simulation(simulation_display: type[pygame.Surface], simulation: type[Simulation]) -> None:
#draw background
def linear_gradient(start_color, end_color, length, value_at):
return [
int(start_color[j] + (float(value_at)/(length-1))*(end_color[j]-start_color[j]))
for j in range(3)
]
def get_color_for_height(height: float) -> (int, int, int):
if height < 70000:
return linear_gradient((31,118,194), (0, 0, 0), 70000, int(height))
else:
return (0, 0, 0)
#gradient for atmosphere
simulation_display.fill(get_color_for_height(simulation.rocket_altitude()))
#draw clouds and stars
#draw clouds (we need continuity TODO)
#if simulation.y < 20000 and randint(0, 100) < 5:
# pygame.draw.circle(simulation_display, (255, 255, 255), (randint(0, simulation_display.get_width()), randint(0, simulation_display.get_height())), 30)
#draw stars
if simulation.rocket_altitude() > 30000:
for _ in range(100):
simulation_display.set_at((randint(0, simulation_display.get_width()), randint(0, simulation_display.get_height())), (255, 255, 255))
#draw stats text
font = pygame.font.SysFont("Comic Sans MS", 30)
g = simulation.body.g(simulation.universe.G, simulation.rocket_altitude())
curr_thrust = simulation.rocket.current_stage().current_thrust(g, simulation.heading)
simulation_display.blit(font.render("Simulation time: {:.0f}s".format(simulation.time), False, (255, 255, 255)),(0,0))
simulation_display.blit(font.render("X: {:.0f}m".format(simulation.x), False, (255, 255, 255)),(0,40))
simulation_display.blit(font.render("Y: {:.0f}m".format(simulation.y), False, (255, 255, 255)),(0,80))
simulation_display.blit(font.render("Speed x: {:.0f}m/s".format(simulation.speed_x), False, (255, 255, 255)),(0,120))
simulation_display.blit(font.render("Speed y: {:.0f}m/s".format(simulation.speed_y), False, (255, 255, 255)),(0,160))
simulation_display.blit(font.render("Acceleration x: {:.2f}m/s2".format(simulation.acceleration_x), False, (255, 255, 255)),(0,200))
simulation_display.blit(font.render("Acceleration y: {:.2f}m/s2".format(simulation.acceleration_y), False, (255, 255, 255)),(0,240))
simulation_display.blit(font.render("Thrust x: {:.0f}N".format(simulation.rocket.current_stage().current_thrust(g, simulation.heading)[0]), False, (255, 255, 255)),(0,280))
simulation_display.blit(font.render("Thrust y: {:.0f}N".format(simulation.rocket.current_stage().current_thrust(g, simulation.heading)[1]), False, (255, 255, 255)),(0,320))
simulation_display.blit(font.render("Altitude: {:.0f}m".format(simulation.rocket_altitude()), False, (255, 255, 255)),(0,360))
simulation_display.blit(font.render("Fuel in stage: {:.0f}kg".format(simulation.rocket.current_stage().fuel_mass), False, (255, 255, 255)),(0,400))
simulation_display.blit(font.render("Stage mass: {:.0f}kg".format(simulation.rocket.current_stage().total_mass()), False, (255, 255, 255)),(0,440))
simulation_display.blit(font.render("Rocket mass: {:.0f}kg".format(simulation.rocket.total_mass()), False, (255, 255, 255)),(0,480))
simulation_display.blit(font.render("Stage number: {:.0f}".format(simulation.rocket.stages_spent), False, (255, 255, 255)),(0,520))
simulation_display.blit(font.render("Throttle: {:.0f}%".format(simulation.rocket.current_stage().throttle), False, (255, 255, 255)),(0,560))
simulation_display.blit(font.render("Gimbal: {:.2f}deg".format(simulation.rocket.current_stage().gimbal), False, (255, 255, 255)),(0,600))
simulation_display.blit(font.render("Heading: {:.2f}deg".format(simulation.heading), False, (255, 255, 255)),(0,640))
#draw rocket
first_stage_height = 90 #TODO
first_stage_width = 60
def calculate_rocket_y_based_on_y_speed_accel(display_height: int, rocket_height: int, speed_y: float, accel_y: float) -> int:
top = display_height / 5 - (rocket_height / 2) #in the case we are accelerating positively
bottom = display_height - (top * 2)
return bottom
def calculate_rocket_x_based_on_x_speed_accel(display_width: int, rocket_width: int, speed_x: float, accel_x: float) -> int:
return display_width / 2 - (rocket_width / 2)
rocket_x = calculate_rocket_x_based_on_x_speed_accel(simulation_display.get_width(), first_stage_width, None, None)
rocket_y = calculate_rocket_y_based_on_y_speed_accel(simulation_display.get_height(), first_stage_height, simulation.speed_y, simulation.acceleration_y)
rocket_color = (244, 67, 54)
flame_radius = 10
flame_color = (255, 125, 100)
#TODO: Rotate rocket with heading
i = simulation.rocket.stages_spent
stage_height = first_stage_height / (i + 1)
stage_y = rocket_y + first_stage_height - stage_height
for _ in simulation.rocket.stages:
stage_width = first_stage_width / (i + 1)
stage_x = rocket_x + i * (stage_width / 2)
pygame.draw.rect(simulation_display, rocket_color, pygame.Rect(stage_x, stage_y, stage_width, stage_height))
stage_y -= stage_height / 2
stage_height /= 2
i += 1
#draw flame
if simulation.rocket.current_stage().engines_on and simulation.rocket.current_stage().fuel_mass > 0:
pygame.draw.circle(simulation_display, flame_color, (rocket_x + (first_stage_width / 2), rocket_y + first_stage_height + flame_radius), flame_radius)
def handle_key_press(simulation, key):
if key == pygame.K_x:
simulation.rocket.current_stage().engines_on = not simulation.rocket.current_stage().engines_on
elif key == pygame.K_z:
simulation.rocket.perform_stage_separation(True)
elif key == pygame.K_DOWN:
current_stage = simulation.rocket.current_stage()
if current_stage.throttle > 0:
current_stage.throttle -= 1
elif key == pygame.K_UP:
current_stage = simulation.rocket.current_stage()
if current_stage.throttle < 100:
current_stage.throttle += 1
elif key == pygame.K_LEFT:
current_stage = simulation.rocket.current_stage()
if current_stage.gimbal > 0 - current_stage.max_engine_gimbaling_angle:
current_stage.gimbal -= 1
elif key == pygame.K_RIGHT:
current_stage = simulation.rocket.current_stage()
if current_stage.gimbal < 0 + current_stage.max_engine_gimbaling_angle:
current_stage.gimbal += 1
if __name__ == "__main__":
main(sys.argv)
|